背包问题,我就知道有零一背包和分数背包。零一背包看了就忘,想起来再看,再看再忘。
分数背包没怎么看过,也没怎么记住。今天心血来潮,在网上找到了一段代码(本段代码来自百度的一个叫“冰蓝沸点”的空间,地址:。我做了一下格式化),如下:
#include#include #include using namespace std;class bag{ private: int id; int weight; int profit; public: bag(){}; bag(int i, int w, int p):id(i), weight(w), profit(p){} int getID(){return id;} int getWeight(){return weight;} int getProfit(){return profit;} double getValue(){return ((double) profit/(double) weight);} bag& operator=(bag &a);};bag& bag::operator=(bag &a){ id = a.id; weight = a.weight; profit = a.profit; return *this;}bool operator<(bag &a, bag &b){ double aValue, bValue; aValue = a.getValue(); bValue = b.getValue(); return (aValue = 0; i--){ if(curWeight + a[i].getWeight() <= limitWeight){ cout << a[i].getID() << "(1)" << " "; curWeight += a[i].getWeight(); curProfit += a[i].getProfit(); if(curWeight == limitWeight){ cout << endl; break ; } }else{ double propotion = (limitWeight - curWeight) / a[i].getWeight(); curWeight += (a[i].getWeight() * propotion); curProfit += (a[i].getProfit() * propotion); cout << a[i].getID() << "(" << propotion << ")" << endl; break ; } } cout << "Total profit: " << curProfit << ".\n";}int main(){ int weight1 = 2, weight2 = 4, weight3 = 1000, profit1 = 1000, profit2 = 20, profit3 = 20; bag a(2, weight1, profit1); bag b(1, weight2, profit2); bag c(0, weight3, profit3); bag *bagArray = new bag[3]; bagArray[0] = a, bagArray[1] = b, bagArray[2] = c; knapsack(bagArray, 3, 5.0); return 0;}
看完代码,明白了。
分数背包要解决的问题是这样的:有个背包和一堆细软。要把细软装到包里。如果细软太大(或者太重)装不进去的话,可以剁碎了变成小细软。现在让你把包装满,并且达到包里的细软总价值最大的效果。至于为什么是背包,而不是挎包,行李箱之类的东西,这我就不知道了。可能就是个抽象含义吧,就是指一个容器了。
解决的思路大概就是这么个意思:先把细软按照单位重量(或者体积)的价值进行排序,然后先可最贵的往包里装,装不下就切成小块装,最贵的装完,装第二贵的,以此类推。直到装满,就算是完事儿了。连个递归的过程都用不上。
看来,似乎分数背包比零一背包问题还简单一些啊。
我知道的背包问题,不管是分数背包或者零一背包,都是只限制一个条件:重量或者是体积。其实这俩限制本质上是一样的啦。然后我现在就有个问题:如果背包既限制重量,又限制体积呢?那么该怎么算?
唉,本人比较懒,先把这个问题冷处理吧。冷处理,是高中时候一个同桌自创的处理问题方法,就是把眼下想不出来的问题冷冻起来。等哪天突然灵光一现的时候,再拿出来研究。说白了就是拖延啦。
也欢迎各位大神能指点一二。不胜感谢。